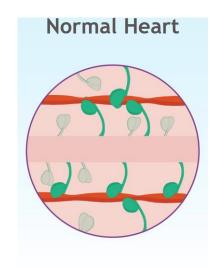
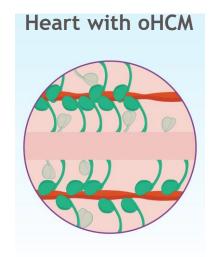
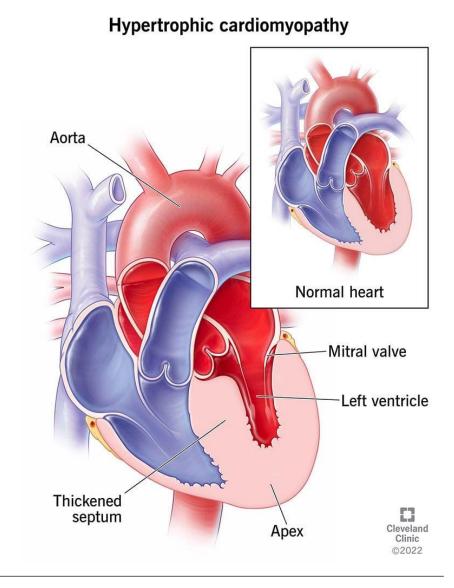
Cardiovascular


Model Informed Drug Development Approach to Support the Approval of Camzyos


Hyunmoon Back (백현문), PhD Associate Director Clinical Pharmacology and Pharmacometrics, BMS

Contents


- Obstructive Hypertrophic Cardiomyopathy and Camzyos (Mavacamten)
- Clin Pharm Package & Clinical Development Program
- Population PK and E-R Analysis
- M&S Framework to Optimize the Posology

Symptomatic Obstructive Hypertrophic Cardiomyopathy

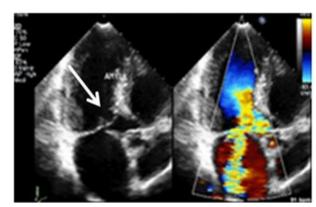
- Obstructive Hypertrophic Cariomyopathy (oHCM): Genetic disorder, rare disease
 - Prevalence: 0.36 per 10,000 in those under 18 to 4.82 per 10,000 in those 55-65
- Common Symptoms
 - Chest Pain, Shortness of Breath, Fatigue, Rapid/Irregular heartbeat, Fainting
- Commonly prescribed Beta-blockers, Calcium Channel Blockers

Key Clinical Parameters/Targets in oHCM

LVOT gradient

- Left Ventricular outflow tract gradient
- Measured by Echocardiogram

pVO₂

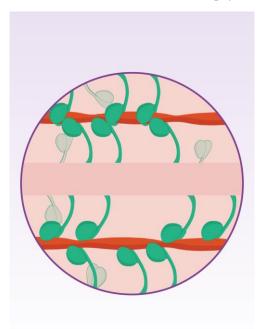

- peak Oxygen Consumption
- Cardiopulmunary Exercise Testing (CPET)

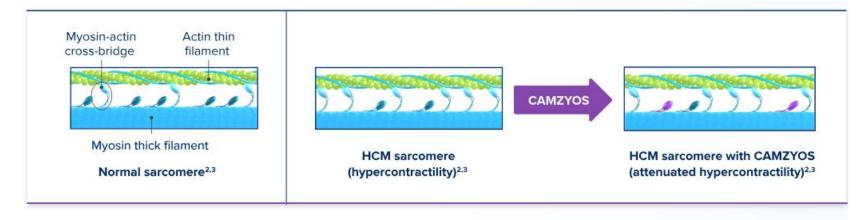
NYHA Class

- New York Heart Association Class
- Class I, II, III, IV

LVEF

- Left Ventricular Ejection Fraction
- Measured by Echocardiogram


New York Heart Association Heart Failure CLASSIFICATIONS


- Cardiac disease, but no symptoms and no limitation in ordinary physical activity.
- Mild symptoms and slight limitation during ordinary activity.
- Significant limitation in activity due to symptoms. Comfortable only at rest.
- Severe limitations.
 Symptoms even while at rest.

CAMZYOS: First and Only Approved Cardiac Myosin Inhibitor

- CAMZYOS, selective reversible allosteric inhibitor, is a prescription medicine used to treat:
 - Adults with symptomatic obstructive hypertrophic cardiomyopathy (oHCM)
 - Approved in 43 countries including the US, Canada, the EU, the UK, and South Korea

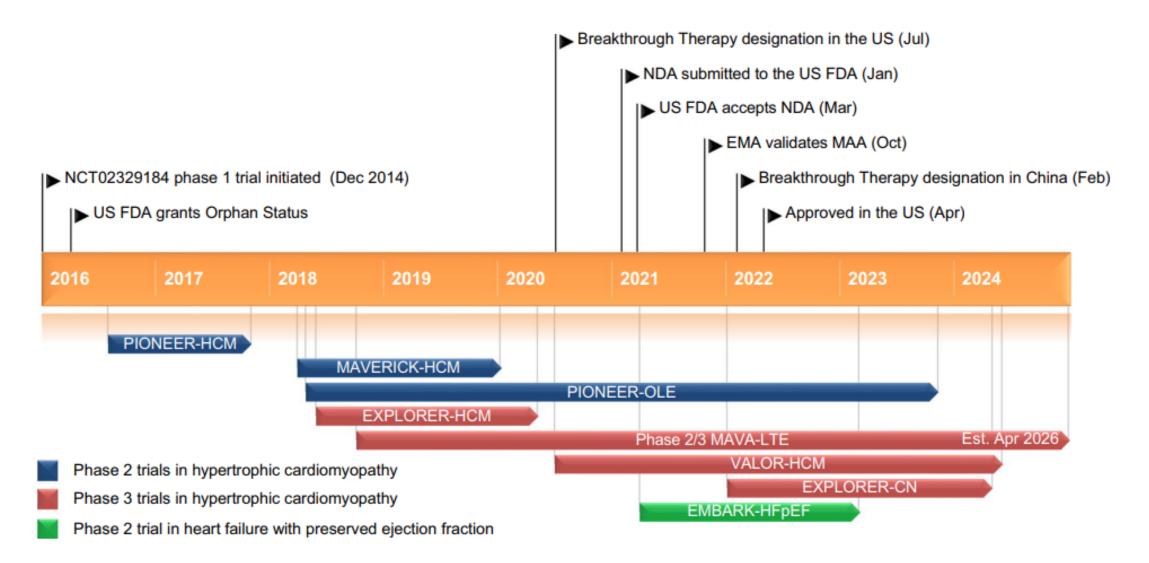
How CAMZYOS works in a Heart with oHCM

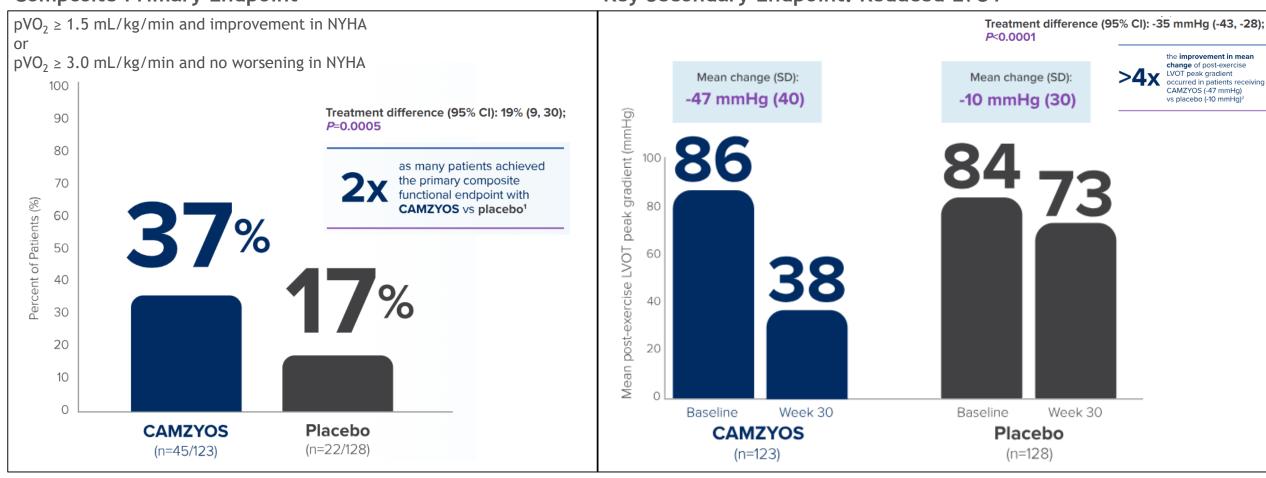
Decreasing the number of excess myosin-actin cross-bridges:

CAMZYOS The 2023 Prix Galien USA Award Winner

The 2023 Prix Galien USA Award Winners

Best Biotechnology Product	Bristol Myers Squibb	Camzyos™ (mavacamten)
Post Dharmosoutical Dradust	Eli Lilly and Company	Mounjaro® (tirzepatide) Injection
Best Pharmaceutical Product	Novo Nordisk Inc.	Ozempic® (semaglutide)
Best Product for Rare/Orphan Diseases	Boehringer Ingelheim	Spevigo® (spesolimab)
	CSL / uniQure	HEMGENIX®
Best Medical Technology	Guardant Health	Guardant360® CDx
Best Digital Health Solution	Medable	Medable Decentralized Clinical Trials (DCT) Platform
Incubators, Accelerators and Equity	Villgro Africa	Incubating Healthcare Startups in Africa




Overview of Clinical Development Program

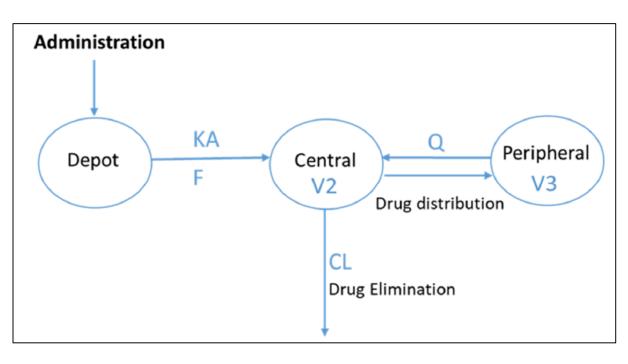
EXPLORER-HCM, A Randomized, double blind, placebocontrolled trial showed Successful Results

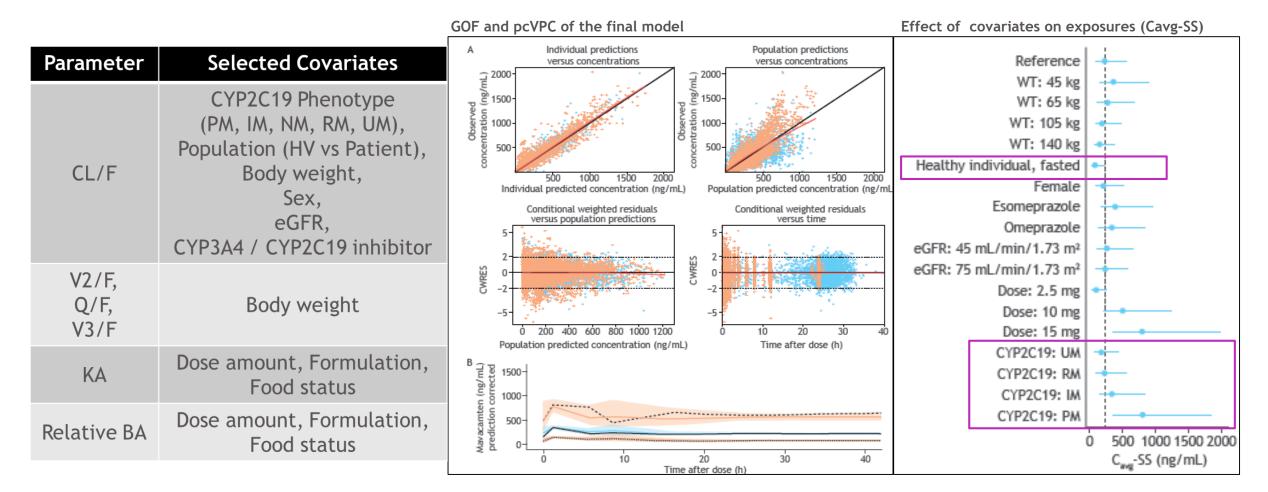
Composite Primary Endpoint

Key Secondary Endpoint: Reduced LVOT

Population PK analysis to characterize the Mavacamten PK

- Data from 12 Clinical studies (Total n= 497, 9244 measurable PK observations)
 - HV: 192, HCM Patient: 305
- Two-compartment model with first order absorption was used to characterize the Mavacamten PK
 - Full model covariate modelling approach




Table 2. Estimated structural model parameters (final model, reference participant)

Parameter	Estimate	%RSE
CL/F, L/h	0.914	3
V2/F, L	6.63	14
V3/F, L	252	2
Q/F, L/h	16.3	4
KA, h ⁻¹	0.301	25
ALAG1, h	0.192	5
F	1 (fixed)	-

IIV	Estimate %	%RSE
CL/F	57.2	3
V2/F	217	8
V3/F	22.9	5
KA	42.9	14
Q/F	23.3	8
Residual Error	0.0292	5

Identify the intrinsic/extrinsic effect using Pop PK analysis and utilize it for E-R analysis

• Identified key covariate effects were used to derive the exposure for E-R analysis

Exposure-Response Modeling of Mavacamten in Adults with HCM

 E-R model for VLVOT and LVEF were characterized by nonlinear mixed-effect model with Cavg168

- Data for efficacy: 272 Patients & safety: 331 Patients
- Time (weeks since dose initiation) was also explored to determine if there was
- Placebo (background treatment) effect over time on **VLVOT**g

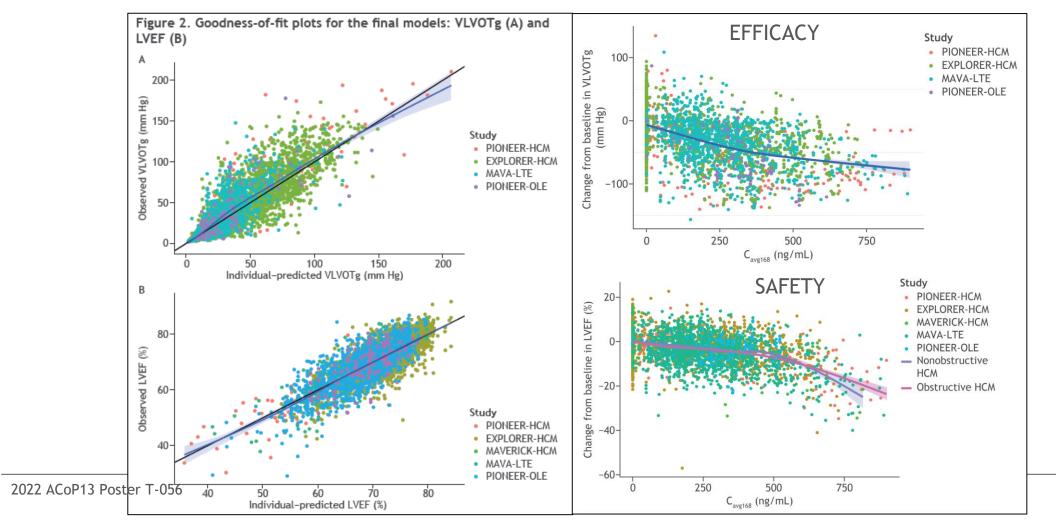
Table 1. Clinical studies used as data source

Study	Phase	Patient population	Endpoint	Status
PIONEER-HCM (NCT02842242)	2	Obstructive HCM	LVEF and VLVOTg	Completed
MAVERICK-HCM (NCT03442764)	2	Nonobstructive HCM	LVEF	Completed
EXPLORER-HCM (NCT03470545)	3	Obstructive HCM	LVEF and VLVOTg	Completed
PIONEER-OLE (NCT03496168)	2	Obstructive HCM	LVEF and VLVOTg	Ongoing
MAVA-LTE (NCT03723655)	3	Obstructive HCM	LVEF and VLVOTg (EXPLORER-LTE cohort)	Ongoing
	2	Nonobstructive HCM	LVEF (MAVERICK-LTE cohort)	Ongoing

LTE, long-term extension; OLE, open-label extension.

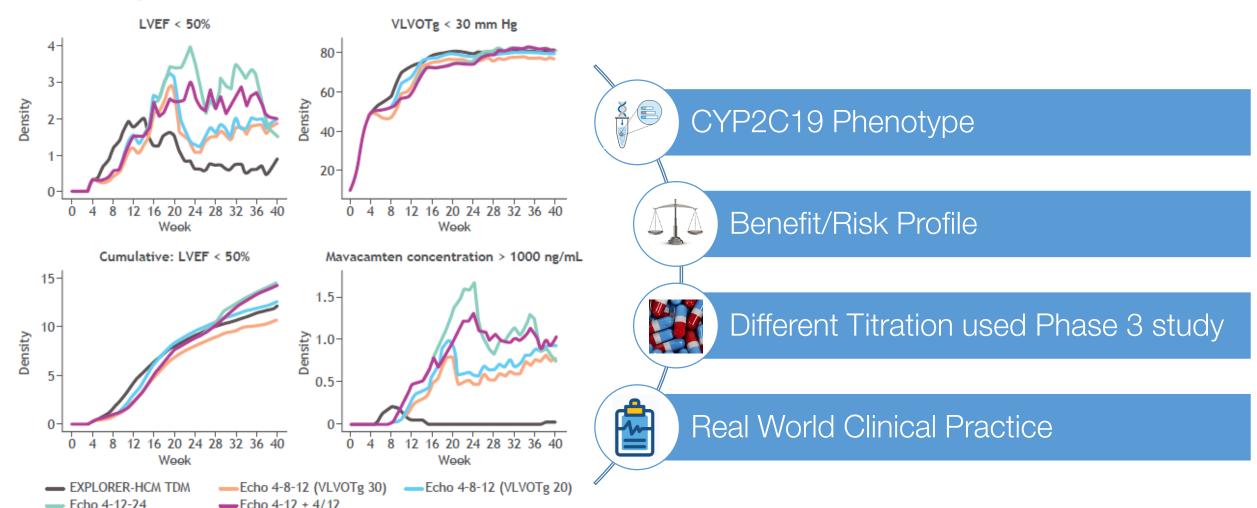
EFFICACY

 $VLVOTg(t) = (VLVOTg_0 \times VLVOTg_{PBO}(t)) \times exp(-k_{MAVA} \times C_{avg168}(t))$, where $VLVOTg_{PBO}(t) = VLVOTg_{PBOMAX} + (1 - VLVOTg_{PBOMAX}) \times exp(-k_{PBO} \times t)$


	Estimate (SE)
Parameters	
Log(VLVOTg _{0.REF}), log(mm Hg)	4.22 (0.0248)
Log(VLVOTg ₀) ~ log(VLVOTg ₀ /69)	0.521 (0.0319)
Log(VLVOTg ₀) ~ log(NT-proBNP/736)	0.108 (0.0152)
Log(k _{MANA.REF}), log(1/(ng/mL))	-5.66 (0.0343)
Log(k _{MAVA}) ~ log(VLVOTg ₀ /69)	0.438 (0.0506)
Placebo parameters	
k _{PBO} , 1/wk	0.0373 (0.0205)
VLVOTg _{PBOMAX}	0.8767 (-)

SAFETY
$$LVEF(t) = LVEF_o \times (1 - k_{MAVA} \times [C_{avg168}(t)]^{qq})$$

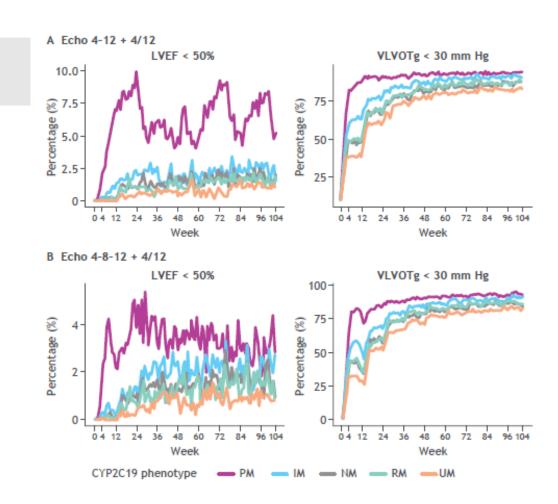
	Estimate (SE)
Parameters	
LVEF _{0.8EP} %	74.0 (0.243)
$LVEF_0 \sim log(LVEF_0/74)$, %	33.6 (1.73)
LVEF ₀ ~ nonobstructive HCM, %	-3.24 (0.485)
LVEF ₀ ~ female, %	1.40 (0.345)
Log(k _{MANA,REF}), 1/(ng/mL)	-12.8 (0.901)
Log(k _{MANA.REF}) ~ all studies except EXPLORER-HCM	4.29 (0.869)
$Log(k_{MANA,REF}) \sim log(LVEF_0/74), 1/(ng/mL)$	1.73 (0.418)
qq _{ref}	1.69 (0.146)
qq _{REF} ~ all studies except EXPLORER-HCM	-0.64 (0.142)


E-R models characterized both Mavacamten Efficacy and Safety endpoints well in patients with oHCM

• These E-R models, together with a pop pk model, form the basis of a simulation tool that was used to identify an optimized dose titration regimen for Mavacamten

12

M&S Framework to optimize Titration Regimen considering multiple factors



Cumulative LVEF < 50% counts patients only at the first instance of reaching that threshold.

Extensive M&S Analysis Throughout oHCM Development Program Led to ECHO Guided Titration Without PK TDM

ECHO Guided Titration is expected to have a similar Benefit/Risk as the titration regimen in EXPLORER

- NO PK TDM-guided dose titrations
- Week 4 & 8: Down-titrate if VLVOT gradient <20 mmHg or
- Week 12 & 24: Up-titrate if VLVOT gradient ≥ 30 mmHg and LVEF ≥ 55%
- Follow up: Every 12 weeks unless up-titration or dose interruption, in which case the follow-up is in 4 weeks.
- Temporary dose interruption: if LVEF <50%

2022 ACoP13 Poster T-056